If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+54x-56=0
a = 9; b = 54; c = -56;
Δ = b2-4ac
Δ = 542-4·9·(-56)
Δ = 4932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4932}=\sqrt{36*137}=\sqrt{36}*\sqrt{137}=6\sqrt{137}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-6\sqrt{137}}{2*9}=\frac{-54-6\sqrt{137}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+6\sqrt{137}}{2*9}=\frac{-54+6\sqrt{137}}{18} $
| 3(-2x+4)=-6(x-2) | | 3y+53=369 | | 14=-6+4(n+8) | | 23b−2=10 | | z(4-1/2)+4=1 | | x-(4-2x)=7(x-10 | | 18=-36+2x | | -2x=-36-18 | | 7x-13=-91 | | 9v+2=20 | | 2g+7=33 | | (22.5)x=360 | | s-30=-27 | | 9+5/p^2+p=1/p^2+p-p-6/p+1 | | 2m-2=m-7 | | 150-5r=87 | | 2(m+15)=-2m | | -7x+1=-6x+5 | | 5c+8=48 | | –2h=7−3h | | 3y+53=540 | | 3y+53=360 | | 6+f=15 | | -x=-75 | | 39+(-4z)=28+(-8z)+3 | | H(t)=-8t2+32t | | 2x+5+5x-4=180 | | 2.8n+15.4=-4.2 | | 0,3-3=1,2x+6 | | 3(x+25)+2(x+15)=-25 | | 13b^2-8b-15=0 | | 25+l=92 |